Optimising Graph Representation for Hardware Implementation of Graph Convolutional Networks for Eventbased Vision

Kamil Jeziorek¹, Piotr Wzorek¹, Krzysztof Błachut¹, Andrea Pinna², Tomasz Kryjak^{1,2}

Embedded Vision Systems Group, 1 Department of Automatic Control and Robotics, AGH University of Krakow, Poland

2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Dynamic Vision Sensor

- Low latency (~1 µs vs 16 ms)
- High dynamic range (140 dB vs 60 dB)
- Increased resistance to motion blur
- Low power consumption (1 mW vs 1 W average)

Standard methods of event data processing

• The events are projected onto a 2D plane to match the CNN models.

Event flattening

Event frame

Processing

We lose sparsity of events and temporal information!

GCN for event processing

- Temporal information is preserved
- We process sparse data structure
- Recent work presents the possibility of updating graph asynchronously
- Currently only on the GPU!

Layer 0

Layer 2

Asynchronous update

CNN vs GCN

Graph Pooling

Towards Energy-Efficient Vision Systems

- Combining event cameras and FPGA platforms energy efficiency
- Combining event cameras and GCN only important data processing

Problems with HW graph generation

- We do not know <u>where</u> events will be generated
- We do not know how many events will be generated
- We do not know when an event will be generated

In previous works, graphs are generated by searching for neighbours among all existing vertices, which is inefficient in terms of read/write operations.

To solve this problem, we present hardware module for event-graph generation.

Event Normalisation

- Spatio-temporal event normalisation (e.g. to 256)
- Quantisation to a fixed resolution

Neighbour matrix

- Neighbours within a specified radius R are searched within a fixed distance.
- New event records its spatial position and time of occurrence in the corresponding cell of the matrix.

Unique events

• Removal of events with the same normalised spatio-temporal position.

if $(x_{33}, y_{33}, t_{33}) == (x'_{33}, y'_{33}, t'_{33}) \rightarrow drop event$

Results

- **Throughput**: 9.6 events per microsecond, up to 1 million events per second (Mev/s) at a 250 MHz clock rate.
- **Memory Initialisation**: Memory requirements are easy to determine based on normalisation parameters.

Utilisation for ZCU 104 platform with data normalisation to 256

Resource type	Used	
LUT	230400	5612 (2.4)
Flip-Flop	460800	950(0.2)
Block RAM	312	17(5.5)
DSP	1728	189(10.9)

Ablation studies - nodes and edges

- In previous works, the average number of edges was 381,563, achieved by removing over half of the events.
- Using our method, the number of edges is reduced to 65,214, which is 5.85 times smaller, while utilising almost all events (98% of events).

Graph size	Event Preprocessing		Edge Generation		Average	Average	
	Without	Random	Uniqu	e Radius	NM	Nodes	Edges
128	x			x		56 940	836,304
	X				X	50,940	309,711
		x		х		25,000	173,868
		х			х		70,896
			X	x		50,498	623,078
			X		х		262,935
256	x			х		56 040	138,757
	X				x	50,940	67,043
		X		x		25 000	28,892
		x			x	25,000	14,051
			X	х		55 025	131,648
			x		х	55,925	65,214

Ablation studies - accuracy

• The module shows minimal impact on accuracy during training, with only 0.08% mean Average Precision (mAP) drop on the N-Caltech dataset.

Method	Normalisation	Pre-processing	Edge Generation	mAP
Base model[6]	Only time $= 100$	Random	Radius	53.47
Normalisation value	64	Random	Radius	43.73
	128	Random	Radius	51.99
	256	Random	Radius	54.77
Direction of edges	128	Random	NM - undirected	52.20
	128	Random	NM - time directed	51.40
	128	Random	NM - op. directed	50.23
Unique values	128	Unique	NM - time directed	51.28
	256	Unique	NM - time directed	53.39

AGH

Summary

- Hardware Module: Presented a hardware module for event data graph generation, optimised for Graph Convolutional Networks (GCNs).
- Performance: Achieved a throughput of up to 1 million events per second, maintaining high accuracy.

Future work

- **GCN Accelerator**: Planning to develop a hardware accelerator for the GCN model.
- **Vision System**: Aiming for integration with the generator module to create a comprehensive end-to-end vision system for object detection.